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Abstract

An analytical characterization of the heat transfer in an oscillating flow through a porous medium is presented in this work. Based on
a two-equation model, two important dimensionless parameters are identified as the ratio of the thermal capacities between the solid and
fluid phases and the ratio of the interstitial heat conductance between the phases to the fluid thermal capacity. The analytic solutions are
obtained for both the fluid and solid temperature variations, and the heat transfer characteristics between the phases are classified into
four regimes. In addition, a criterion for the validity of the local thermal equilibrium is suggested in a simple form as the ratio of the two
time scales intrinsically involved in any transient heat transfer in porous media, namely the time scale relevant to the thermal inertia of
porous media and the time scale pertinent to the transient variation of the boundary condition.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Porous media have been widely used in industry as an
effective means of transporting and storing thermal energy.
Common examples of the industrial applications include
thermal regenerators of the Stirling cycles, rotary regener-
ative heat exchangers, and temporary energy storage units.
In such applications, the transient characteristics of the
porous media are of importance since the porous media
absorb and release thermal energy periodically [1].

One of the early investigations on the transient heat
transfer in porous media was performed by Riaz [2]. He
analyzed the unsteady response of thermal storage system
to a step change in the inlet air temperature. Spiga and
Spiga [3] analytically obtained the dynamic response of
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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the thermal storage system to an arbitrary time-varying
inlet temperature. Recently, the case where the flow oscil-
lates through a porous medium were investigated by
Muralidhar and Suzuki [4], and Klein and Eigenberger
[5]. They analyzed numerically or theoretically the periodic
heat transfer in porous media for the analysis of thermal
regenerators. Most of the studies mentioned above dealt
with the problems by means of numerical integrations or
complicated series solutions. These means, however, are
not very suitable for deduction of fundamental aspects of
periodic heat transfer in porous media underlying the
apparent complex phenomena.

The main objective of this study is to analyze theoreti-
cally the transient heat transfer in porous media under
oscillating flow condition. Exact solutions are obtained
for both the fluid and solid temperature variations, and
the transient thermal characteristics are investigated theo-
retically based on the solutions. Additionally, the tempera-
ture difference between the phases is examined and a simple
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Nomenclature

a interfacial area per unit volume of porous media
(m�1)

Cp isobaric heat capacity (J kg�1 K�1)
g complex amplitude of oscillating temperature
h interstitial heat transfer coefficient (W m�2 K�1)
K thermal capacity ratio defined in Eq. (7)
k thermal conductivity (W m�1 K�1)
L length of porous media in flow direction (m)
Ls oscillation distance of flow (m)
S ratio of interstitial thermal conductance to fluid

thermal capacity
T temperature (K)
T0 time-averaged temperature (K)
t time (s)
to time scale of oscillating flow (s)
tp characteristic time of porous media (s)
u fluid velocity (m s�1)
x longitudinal coordinate (m)

Greek symbols

h non-dimensional temperature
e porosity
c gradient of the linear temperature distribution

(K m�1)
s non-dimensional time
q density (kg m�3)
x frequency (s�1)

Subscripts
eff effective value
f fluid
s solid
0 reference point
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criterion is prescribed for the validity of the local thermal
equilibrium.

2. Theoretical analysis

Fig. 1 shows an infinitely large slab of a porous medium
with a thickness of L. The fluid at each side of the slab is
maintained at high and low temperatures, respectively.
The flow oscillates back and forth through the porous slab
and transfers heat from the hot end to the cold end of the
slab. This situation commonly happens in the regenerators
of the ventilation systems and in the thermal regenerative
engines or coolers. The energy equation for each phase
can be written as [3]:

Fluid phase:
eðqCpÞf
oT f

ot
þ eðqCpÞf u

oT f

ox
¼ kf ;eff

o2T f

ox2
þ haðT s � T fÞ: ð1Þ
Fig. 1. Schematics
Solid phase:

ð1� eÞðqCpÞs
oT s

ot
¼ ks;eff

o
2T s

ox2
þ haðT f � T sÞ: ð2Þ

The oscillating velocity in the above equation is
expressed as

u ¼ Lsx
2

cosðxtÞ; ð3Þ

where Ls is the swept distance and x is the frequency of the
oscillating flow.

When the representative pore diameter of the porous
medium is sufficiently small compared to the thickness of
the slab as is often the case, it is well known that the
entrance region near each end of the porous slab is negligi-
bly small compared to the thickness of the slab [6,7].
Neglecting the entrance region, the temperature within
the slab has been found to have a linear distribution
[4,5,8]. This finding implies a negligible contribution of
of the model.
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the fluid dispersion or the solid conduction to the local
energy transfer in porous media under oscillating flow
condition.

Considering the linear temperature distribution, a non-
dimensional temperature can be defined as

h ¼ T � T 0ðxÞ
Lsc=2

; T 0ðxÞ ¼ cðx� x0Þ: ð4Þ

In the above equation, T0 implies the time-averaged
temperature within the slab, c is the gradient of the linear
temperature distribution, and x0 is the point where T0 is
set to be 0. Considering the linear temperature distribution
and using the non-dimensional temperature, Eqs. (1) and
(2) are simplified and rendered dimensionless as

dhf

ds
þ cosðsÞ ¼ Sðhs � hfÞ; ð5Þ

K
dhs

ds
¼ Sðhf � hsÞ; ð6Þ

where two non-dimensional parameters, S and K, are
defined as

S ¼ ha
eðqCpÞfx

; K ¼ ð1� eÞðqCpÞs
eðqCpÞf

: ð7Þ

The parameter S is the ratio of the interstitial heat con-
ductance between the phases to the fluid thermal capacity.
The parameter K represents the ratio of the thermal capac-
ities between the solid and fluid phases. Conceptually, S

and K imply two important aspects of the porous medium
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Fig. 2. Temperature variations for four different cases: (a) K = 100, S = 0.
as a regenerator, i.e., how fast or how large an amount of
heat can be transferred from the fluid phase to the solid
phase.

The exact solution to the equations can be sought as

hðsÞ ¼ Realbg � eisc; ð8Þ
where g is a complex number containing information about
the amplitude and the phase angle of the temperature
variation. Substituting Eq. (8) into Eqs. (5) and (6), and
solving the subsequent algebraic equations yields

gf ¼
S þ iK

K � iSð1þ KÞ ; ð9Þ

gs ¼
S

K � iS 1þ Kð Þ : ð10Þ

The timewise temperature variation of each phase can
be obtained by substituting Eqs. (9) and (10) into Eq. (8).

3. Results and discussion

The temperature variation of the fluid and solid phases
for a range of parameters, K and S, is shown in Fig. 2
in which the time period of one cycle is selected as
�p/2 6 s 6 3p/2. Referring to Eq. (3), the left half of each
figure represents the cold blow period and the right half
represents the hot blow period.

When K is relatively large and S is small as in Fig. 2(a),
the temperature variation of the fluid phase is very large
whereas that of the solid phase is negligibly small. In a
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1; (b) K = 100, S = 10; (c) K = 100, S = 1000 and (d) K = 0.1, S = 10.
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regenerator for thermal recovery, a large fluid temperature
variation can be interpreted as poor thermal regeneration.
As S increases for a fixed value of K, the temperature var-
iation of the fluid phase becomes smaller and that of the
solid phase becomes larger as shown in Fig. 2(b). The
increase in the amplitude of the solid temperature variation
represents the increase in the amount of heat absorbed and
released by the solid phase. For a further increase of S even
larger than K, the solid temperature maintains almost the
same while the fluid temperature oscillation decreases to
have a similar temperature variation to the solid phase as
shown in Fig. 2(c). In the meanwhile, if K decreases from
the case in Fig. 2(c), the temperature oscillations increase
for both the solid and fluid phases as shown in Fig. 2(d).

To show more clearly the effects of the parameters on
the transient heat transfer, the amplitude of oscillating tem-
perature is plotted for each phase as a function of S and K

in Fig. 3. Each of Fig. 3(a) and (b) shows the existence of
distinct regimes with different dependency on the para-
meters. From the three-dimensional plots in Fig. 3, four
distinct regimes can be identified and are presented in
Fig. 4. The range of the parameters in each regime is
arranged in Table 1. Table 1 also summarizes the reduced
governing equations and asymptotic solutions to the tem-
perature variations in each regime. The asymptotic temper-
ature variations were obtained by applying extreme values
of the parameters, S and K, within the range of each regime
to Eqs. (9) and (10). They are found the same with those
directly obtainable from the reduced governing equations.

The simplified form of governing equations provides a
clearer physical view of the heat transfer characteristics
by identifying dominant factors in each regime. From
Table 1, the energy convected by oscillating flow is found
to balance with the energy stored in the solid phase in
regimes II and III, whereas it does with the energy stored
in the fluid phase in regimes I and IV. Since both the
parameters, S and K are larger than one in regimes II
and III, the convected energy can be transferred to the solid
phase by the large interstitial heat conductance and also
can be stored in the solid phase due to the large solid ther-
Fig. 3. Amplitudes of oscillating tem
mal capacity. If either of the parameters is less than one,
the convected energy can not be stored in the solid phase.

Table 1 also shows that the temperature of each phase is
asymptotically the same in regimes III and IV, while it is
not in regimes I and II. From this founding, the criterion
for local thermal equilibrium can be arranged as

K
S
¼ ð1� eÞðqCpÞsx

ha
� 1: ð11Þ

This criterion describes that the local thermal equilibrium
can be achieved when the interstitial heat conductance, S,
is larger than the thermal capacity of the solid phase, K.

While the flow is steady and unidirectional, the works
on the transient heat transfer subject to unsteady thermal
boundary conditions are also worthy of note. Spiga and
Spiga [3] investigated theoretically the dynamic response
of porous media to an arbitrary time varying inlet temper-
ature. Though they have not mentioned about the thermal
equilibrium explicitly, it can be readily shown that the tem-
perature difference between the phases diminishes in their
solution when the same condition as expressed in Eq.
(11) is satisfied with x being the frequency of the periodic
variation of the thermal boundary condition. It is quite
peratures: (a) fluid and (b) solid.



Table 1
Reduced governing equations and asymptotic solutions within each regime

Regime Range Reduced governing equations Asymptotic solutions

I
K� S and S� 1

dhf

ds
� � cos s; K

dhs

ds
� Shf hf � � sin s; hs �

S
K

cos s

II K� S� 1 Shf � � cos s; K
dhs

ds
� Shf hf � �

1

S
cos s; hs � �

1

K
sin s

III S� K� 1 K
dhs

ds
� � cos s; hf � hs hf � �

1

K
sin s; hs � �

1

K
sin s

IV S� K and K� 1
dhf

ds
� � cos s; hf � hs hf � � sins, hs � � sins
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interesting that the resulting criterion for the thermal equi-
librium is exactly the same even though the situation of the
transient heat transfer is completely different. From this
finding, it might be inferred that there exists a general cri-
terion for the thermal equilibrium in transient heat transfer
in porous media independent of the detailed thermal or
flow boundary conditions. In this respect, the criterion,
Eq. (11) is rearranged in a different expression as

K
S
¼ ð1� eÞðqCpÞsx

ha
¼ tp

to

� 1; ð12Þ

where

to ¼
1

x
and tp ¼

ð1� eÞðqCpÞs
ha

: ð13Þ

In the above equation, to is the time scale of the variation
of the flow or thermal boundary condition, and tp is the
time scale concerning the thermal inertia of the porous
media. Now the criterion is expressed as the ratio of the
two time scales intrinsically involved in any transient heat
transfer problem in porous media. The criterion describes
that the local thermal equilibrium can be achieved when
the characteristic time of the porous media is much shorter
than the time scale concerning the variation of the bound-
ary condition.

4. Conclusions

An analytical characterization of the transient heat
transfer in porous media under the oscillating flow condi-
tion is presented in this work. Based on a two-equation
model, two important dimensionless parameters are identi-
fied as the ratio of the thermal capacities between the solid
and fluid phases and the ratio of the interstitial heat con-
ductance between the phases to the fluid thermal capacity.
The analytic solutions are obtained for both the fluid and
solid temperature variations, and the heat transfer charac-
teristics between phases are classified into four regimes.

In addition, a criterion for the validity of the local ther-
mal equilibrium is suggested in a simple form as the ratio of
the two time scales intrinsically involved in any transient
heat transfer in porous media, namely the time scale rele-
vant to the thermal inertia of porous media and the time
scale pertinent to the transient variation of the boundary
condition. The local thermal equilibrium can be achieved
when the characteristic time of the porous media is much
shorter than the time scale concerning the variation of
the boundary condition.
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